
 

 

 

                                 Final Report 

Course Info: COMP 4801 Final Year Project 

Project Title: Financial Market Prediction by Deep Learning Neural Networks 

Students: 3035142596 LIU Jiayao 

Date of Submission: 15/04/2018 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

                              Abstract 

In recent years, traditional machine learning models such as linear regression and 

logistic regression have been extensively applied in the financial market. Deep 

learning with its contributions to Artificial Intelligence has also drawn researchers and 

investors to utilize it to predict stock price movement. This report explores the 

application of the traditional machine learning models including linear regression, 

logistic regression, support vector machine (SVM) in conjunction with multilayer 

perceptron (MLP) and convolutional neural network (CNN) to predict the value and 

trend of Dow Jones Industrial Average. A qualitative objective is to evaluate the MSE 

of regression models, while a quantitative objective is to achieve accuracy above the 

larger percentage of the positive or negative samples for classification models. The 

technical difficulty lies in determining the optimal hyperparameters of the neural 

network models. Mock trading is conducted on the constructed models for 10 business 

days. An analysis of the performance and limitations of the models is presented in the 

report.  

 

 

 

 

 

 

Acknowledgement 

We would like to express our very great appreciation to Dr. Kwok-Ping Chan, our 

project supervisor, who offered constructive suggestions and provided a GPU to the 

development of this final year project. 

 

 

 

 

  



 3 

Table of Contents 

List of Figures                                                        6 

List of Tables                                                        7 

Abbreviations                                                        9 

1. Introduction                                                      10 

  1.1 Background Information                                        10 

    1.1.1 Machine Learning                                           10    

    1.1.2 Financial Market and Dow Jones Industrial Average              11                            

  1.2 Business Goal and Technical Objective                             11                                                        

1.3 Related Work                                                  12 

1.4 Outline of the Report                                            13 

2. Methodology                                                      13 

  2.1 Binary Classification Problem                                    14 

  2.2 Regression Problem                                             14 

  2.3 Data Collection                                                 14 

  2.4 Data Preprocessing                                             15 

  2.5 Machine Learning Models                                       19 

  2.5.1 Traditional Machine Learning Models                          20 

  2.5.1.1 Linear Regression                                        20 

     2.5.1.2 Logistic Regression                                       20 

  2.5.1.3 Support Vector Machine                                   21 

    2.5.2 Deep Learning                                              21 

     2.5.2.1 Multilayer Perceptron                                     22 

     2.5.2.2 Convolutional Neural Network                              22 

       2.5.2.2.1 Convolutional Layer                                   23 

   2.5.2.2.2 Pooling Layer                                        23 

  2.6 Model Training                                                 24 

2.6.1 Hyperparameters and Parameters                             25 

2.6.1.1 Traditional Learning Models                              25 

      2.6.1.2 Neural Network Models                                  25 

    2.6.2 Backpropagation of Neural Networks                          26                                  

 2.6.3 Tuning the Hyperparameters                                 26 

  2.7 Assessment of the Model                                         27 



 4 

  2.8 Software Setup                                                 28 

3. Results and Findings                                               29  

  3.1 Regression Models                                              29 

3.1.1 Linear Regression                                            29 

3.1.1.1 Lasso Regression (L1 norm)                                30 

3.1.1.2 Ridge Regression (L2 norm)                                31 

   3.1.2 Multilayer Perceptron (Regression)                             32 

3.1.2.1 MLP-R-Model 1                                          32 

3.1.2.2 MLP-R-Model 2                                          33 

3.1.2.3 MLP-R-Model 3                                          34 

  3.2 Classification Models                                            34 

3.2.1 Logistic Regression                                           34 

     3.2.1.1 Logistic Regression with L2 Penalty                          35 

     3.2.1.2 Logistic Regression with L1 Penalty                          36 

3.2.2 Support Vector Machine                                       37 

3.2.3 Multilayer Perceptron (Classification)                           38 

3.2.3.1 MLP-C-Model 1                                          38 

3.2.3.2 MLP-C-Model 2                                          39 

3.2.3.3 MLP-C-Model 3                                          39 

   3.2.4 1D Convolutional Neural Network (Univariate)                   40 

3.2.4.1 Conv-UC-Model 1                                        40 

3.2.4.2 Conv-UC-Model 2                                        41 

3.2.4.3 Conv-UC-Model 3                                        41 

   3.2.5 1D Convolutional Neural Network (Multivariate)                  42 

3.2.5.1 Conv-MC-Model 1                                        42 

3.2.5.2 Conv-MC-Model 2                                        43 

3.2.5.3 Conv-MC-Model 3                                        43 

3.3 Summary of Results                                             44 

  3.3.1 Regression Models                                          44 

   3.3.1.1 Linear Regression                                        44 

   3.3.1.2 Multilayer Perceptron (Regression)                         44 

  3.3.2 Classification Models                                        44 

   3.3.2.1 Logistic Regression                                       44 



 5 

   3.3.2.2 Support Vector Machine                                   44 

   3.3.2.3 Multilayer Perceptron (Classification)                       45 

   3.3.2.4 1D Convolutional Neural Network (Univariate)               45 

3.3.2.5 1D Convolutional Neural Network (Multivariate)              45 

4. Mock Trading                                                     45 

4.1 Regression Models                                              46 

  4.1.1 Linear Regression                                           46 

  4.1.2 Multilayer Perceptron (Regression)                            46 

4.2 Classification Models                                            47 

  4.2.1 Logistic Regression                                          47 

  4.2.2 Support Vector Machine                                      47 

  4.2.3 Multilayer Perceptron (Classification)                          48 

    4.2.4 1D Convolutional Neural Network (Univariate)                  48 

4.2.5 1D Convolutional Neural Network (Multivariate)                 49 

  4.3 Summary of Mock Trading Results                                50 

5. Discussions and Analysis                                            50 

  5.1 Evaluations and Explanations                                    50 

  5.2 Limitations and Difficulties                                       51                                                   

6. Future Improvement and Recommendations                           51                                           

7. Conclusion                                                       52 

References                                                      53 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

List of Figures 

Figure 2.1 Three technical procedures of the project                          13 

Figure 2.2 Five technical procedures of data preprocessing                    16 

Figure 2.3 A regular three-layer neural network                             22 

Figure 2.4 How the data from image pixels are recognized as patterns by the 

convolutional neural network.                                           22 

Figure 2.5 How an image with three channels (RGB) is processed by the filters in the 

convolutional layer                                                   23 

Figure 2.6 Maxpooling with a filter of size 2x2 and a stride of 2                24 

Figure 2.7 Demonstration regarding fitting model on the datasets               26 

Figure 2.8 How the technical procedures are implemented in Python            28 

Figure 3.1 MSE of training and test sets by lasso regression with varying alpha from 

0.1 to 0.9                                                           30 

Figure 3.2 MSE of training and test sets by ridge regression with varying alpha from 1 

to 99                                                               31 

Figure 3.3 The first 100 predicted prices against real prices by lasso regression with 

alpha = 0.02                                                         32 

Figure 3.4 The first 100 predicted prices against real prices by MLP-R-Model 1   33 

Figure 3.5 Accuracy of training and test sets by logistic regression with L2 penalty 

with C varying from 0.1 to 2.0                                          35 

Figure 3.6 Accuracy of logistic regression with L1 penalty with C varying from 0.1 to 

2.0                                                                36 

 

 

 

 

 

 

 

 

 

 

 



 7 

List of Tables 

Table 2.1 Breakdown of the six variables in the input dataset                  14 

Table 2.2 Illustration of the first three samples of Univariate models            16 

Table 2.3 Illustration of the first sample of Multivariate model                 17 

Table 2.4 Illustration of the first three samples of Univariate models after 

standardization                                                      18 

Table 2.5 Illustration of the first sample of Multivariate model after standardization 18 

Table 2.6 Sample size of training and test sets                               19 

Table 2.7 Distribution of positive and negative samples                      19 

Table 2.8 Four scenarios of the accuracy of training dataset and the accuracy of 

validation dataset                                                     27 

Table 3.1 MSE of training and test sets by varying alpha from 0.01 to 0.09 by lasso 

regression                                                          30 

Table 3.2 MSE of training and test sets without regularization by linear regression 30 

Table 3.3 Detailed structure and hyperparameters of MLP-R-Model 1           32 

Table 3.4 MSE of training and test sets by MLP-R-Model 1                   33 

Table 3.5 Detailed structure and hyperparameters of MLP-R-Model 2           33 

Table 3.6 MSE of training and test sets by MLP-R-Model 2                   34 

Table 3.7 Detailed structure and hyperparameters of MLP-R-Model 3           34 

Table 3.8 MSE of training and test sets by MLP-R-Model 3                   34 

Table 3.9 Accuracy of training and test sets by logistic regression with L1 and L2 

penalty with default C=1.0                                              34 

Table 3.10 Accuracy of training and test sets by logistic regression with L2 penalty 

with C varying from 0.01 to 0.1                                         35 

Table 3.11 Accuracy of training and test sets by logistic regression with L1 penalty 

with C varying from 1.3 to 1.6                                          37 

Table 3.12 Accuracy of training and test sets with linear kernel and RBF kernel    37 

Table 3.13 Accuracy of training and test sets with RBF kernel by grid search in 

C _ r a n g e  a n d  g a m m a _ r a n g e                                                    

3 7 

Table 3.14 Detailed structure and hyperparameters of MLP-C-Model 1          38 

Table 3.15 Accuracy and loss of training and test sets by MLP-C-Model 1        39 

Table 3.16 Detailed structure and hyperparameters of MLP-C-Model 2           39 



 8 

Table 3.17 Accuracy and loss of training and test sets by MLP-C-Model 2        39 

Table 3.18 Detailed structure and hyperparameters of MLP-C-Model 3          39 

Table 3.19 Accuracy and loss of training and test sets by MLP-C-Model 3        40 

Table 3.20 Detailed structure and hyperparameters of Conv-UC-Model 1 

(BatchNormalization omitted)                                           40 

Table 3.21 Accuracy and loss of training and test sets by Conv-UC-Model 1      40 

Table 3.22 Detailed structure and hyperparameters of Conv-UC-Model 2 

(BatchNormalization omitted)                                           41 

Table 3.23 Accuracy and loss of training and test sets by Conv-UC-Model 2      41 

Table 3.24 Detailed structure and hyperparameters of Conv-UC-Model 3 

(BatchNormalization omitted)                                           41 

Table 3.25 Accuracy and loss of training and test sets by Conv-UC-Model 3      42 

Table 3.26 Detailed structure and hyperparameters of Conv-MC-Model 1 

(BatchNormalization, Flatten omitted)                                    42 

Table 3.27 Accuracy and loss of training and test sets by Conv-MC-Model 1      42 

Table 3.28 Detailed structure and hyperparameters of Conv-MC-Model 2 

(BatchNormalization, Flatten omitted)                                    43 

Table 3.29 Accuracy and loss of training and test sets by Conv-MC-Model 2      43 

Table 3.30 Detailed structure and hyperparameters of Conv-MC-Model 3 

(BatchNormalization, Flatten omitted)                                    43 

Table 3.31 Accuracy and loss of training and test sets by Conv-MC-Model 3      44 

Table 3.32 Mock trading results for linear regression model                   46 

Table 3.34 Mock trading results for MLP-R-Model 1                        46 

Table 3.34 Mock trading results for logistic regression model                  47 

Table 3.35 Mock trading results for SVM model                             47 

Table 3.36 Mock trading results for MLP-C-Model 1                        48 

Table 3.37 Mock trading results for Conv-UC-Model 1                       48 

Table 3.38 Mock trading results for Conv-MC-Model 1                      49 

Table 3.39 Summary of mock trading results in descending order of gain         49 

 

 

 

 



 9 

 

Abbreviations 

 

CNN        Convolutional neural network  

DJIA        Dow Jones Industrial Average 

MLP        Multilayer Perceptron 

SVM        Support Vector Machine 

LSE         Least Squares Estimation 

SSE         Sum of Squared Error 

MSE        Mean Squared Error 

MLE        Maximum Likelihood Estimation 

RBF        Radial Basis Function 

RSI         Relative Strength Index 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10 

 

1. Introduction  

The introduction part will first present some background information of our project 

including basic knowledge with respect to machine learning, especially in relation to 

deep learning. In addition, some basic information regarding the financial market and 

the predicted objective of the project – Dow Jones Industrial Average will also be 

introduced. Then the business goal and the technical objective will be discussed 

followed by an outline of the remainder of the report. 

 

1.1 Background Information 

 

1.1.1 Machine Learning 

Because of the increasing quantity of and accessibility to data and the augmenting 

computation power of machines, nowadays stock prediction models that combine big 

data and machine learning models are employed to identify any arbitrage opportunity 

in the stock market. Common machine learning classification models to predict the 

movement of stock price include linear regression, logistic regression, SVM etc. 

 

Deep learning, as a class of machine learning, has contributed substantially to 

Artificial Intelligence. It has been considerably applied in image recognition, speech 

processing and even in games such as AlphaGo. In contrast to the traditional machine 

learning algorithms, deep learning possesses the advantage to identify the features of 

data itself and excels at exploring the complex relationship, especially nonlinear 

relationship, among the variables while machine learning models produce the output 

by mainly studying how to combine the features that are already formed by humans 

(Ketkar, 2017). Therefore, compared to traditional machine learning models, neural 

network models reduce feature engineering. 

 

There is a growing trend to apply deep learning to stock prediction, and we have found 

that Multilayer Perceptron (MLP) are utilized more frequently than other types of 

neural networks.  

 

In this project, the performance of the traditional machine learning models including 



 11 

linear regression, logistic regression, SVM and the neural network models including 

MLP and CNN on predicting the value and trend of Dow Jones Industrial Average 

(DJIA) will be evaluated. 

 

1.1.2 Financial Market and Dow Jones Industrial Average  

One of the most active financial markets is the stock market. The performance of the 

stock market is related to the overall performance of a nation’s economy while stock 

indices serve as barometers of the stock market. For example, launched in 1896, Dow 

Jones Industrial Average (DJIA) is a well-known price-weighted stock index which 

consists of the stocks of 30 blue chip companies. All of these 30 component companies 

are listed in the New York Stock Exchange and NASDAQ and they are representative 

of American industries (S&P Dow Jones Indices, 2017). Because it is of good diversity 

and liquidity of the stock market, it is not only an effective indicator of the market, but 

is also suitable for testing trading model. 

 

There exist different theories and hypotheses regarding the financial market. 

According to random walk theory, the price changes are random and are thereby 

unpredictable, which is consistent with the Efficient Market Hypothesis. On the 

contrary, technical analysts believe that they can earn excess return by identifying the 

trends in the financial markets with some analytic tools such as analyzing charts of 

historical price movements. 

 

1.2 Business Goal and Technical Objective 

Our project intends to build models to predict the trend and the value of Dow Jones 

Industrial Average. The trading data of the past 30 business days will be analyzed to 

predict the exact value or the trend in the 31
st
 day. For value prediction problem, we 

hope to gain a predicted price as close as possible to the real price while with regards 

to trend prediction, the target is to achieve an accuracy above the larger percentage of 

the positive or negative samples in the dataset, because for instance, if the positive 

samples take up 60% of the whole dataset, then a simple classifier is to predict all the 

samples to be positive to achieve 60% accuracy from the perspective of probability. 

 

The technical difficulty of the project lies in the determination of optimal 



 12 

hyperparameters in the model to produce a better prediction. Analysis regarding the 

performance and the limitation of the established models will be conducted. 

 

1.3 Related Work 

Deep learning is used widely in the field of financial prediction in recent decades. 

Krauss, Do and Huck (2015) applied a four-layer standard neural network and the 

ensemble models combining artificial neural network (ANN) and other machine 

learning models such as random forests to generate one-day-ahead trading signals with 

data of S&P 500. Simple returns over different periods of the constituents of S&P 500 

are generated as the feature space to serve as the input of the model while whether the  

“one-period return of stock s is larger than the corresponding cross-sectional median 

return computed over all stocks” is the response variable. This problem is defined as a 

binary classification problem. The undervalued and overvalued stocks are picked out 

according to the largest and smallest predicted probabilities and then be bought and be 

sold respectively. The deep learning model achieves 0.33% return per day. 

 

According to the preliminary research, CNN has significant achievements in image 

recognition. Lecun (1998) developed LeNet to recognize handwritten characters, 

which are the first successful applications of CNN to explore the spatial relationship 

between pixels by convolution. Krizhevsky, Sutskever, and Hinton (2012) developed 

AlexNet which applies CNN to classify the 1.2 million high-resolution images into 

1000 classes. Instead of tanh and average pooling, AlexNet adopts ReLU nonlinearity 

and max pooling and is trained on multiple GPU, substantially improving the 

computation speed. 

 

There exists argument between value predictions and sign predictions in stock 

prediction problem. The former prediction is usually evaluated by the deviation 

between the predicted and real values. Nevertheless, as suggested by Leung, Daouk 

and Chen (2000), the trading signals generated by value predictions with small 

deviations are not necessarily as profitable as a sign prediction model. The empirical 

results of comparing some multivariate classification models and level (i.e. value) 

estimation models show that classification models surpass the value prediction models 

by earning more returns. 



 13 

 

Even though the predicted value is close to the real value, if the sign is predicted 

falsely, a loss will still be incurred. In contrast, if the trend is predicted accurately, we 

can ensure the gain without considering the magnitude. Furthermore, considering that 

pattern and image recognition are classification problems, the focus on our project is to 

explore the application of neural networks including MLP and CNN in stock trend 

prediction. In addition, linear regression and MLP will also be applied to predict the 

exact values to evaluate their performance of stock price prediction. 

 

1.4 Outline of the Report 

After the introduction session, the remainder of this report will first state how we are 

going to collect and preprocess the data, followed by the theories and mechanisms of 

different models applied in the project. Subsequently, the most critical procedure of 

model training will be presented. Then we will report the model training results and 

the mock trading results based on the constructed models. After that, discussions as 

well as the future improvement of the project will also be given. Finally, the report 

ends with a brief evaluation of our project.  

 

2. Methodology 

Fundamental analysis and technical analysis are two main methodologies to analyze 

the financial market. In our project, technical analysis is applied to study the past 

trading data which we believe will give implications on the future price movements. 

 

 

Figure 2.1 Three technical procedures of the project 

 

Figure 2.1 shows the general technical flow of the project. The data will be collected 

and preprocessed before they are fitted to the model.  

 

The following session will first define our stock prediction problem and then present 



 14 

how the raw data are collected and preprocessed for the model construction. Before the 

discussion of the most crucial part of model training, the theories and mechanisms of 

the models will be introduced and the assessment of the models will be stated to 

facilitate the elaboration of the model training process. Finally, how the programming 

language python is employed to implement each procedure will be explained. 

 

2.1 Binary Classification Problem 

In essence, our stock trend prediction problem is a supervised binary classification 

problem because the data will be labelled and the model will generate a discrete binary 

result (Y = 0 or 1) to represent the trend. 

 

Logistic Regression, SVM, MLP, 1D CNN (univariate) and 1D CNN (multivariate) 

will be adopted to directly predict the trend and apply accuracy as the evaluation 

metrics. 

 

2.2 Regression Problem 

The stock price prediction problem is a supervised regression problem, for which we 

intend to find out the expectation of the price of the 31
st
 day (response) given the price 

values (predictors) of the past 30 days. As a matter of fact, based on the difference 

between the predicted adjusted closing price of the 31
st
 day and the real adjusted 

closing price of the 30
th

 day, we can also get a predicted trend. 

  

Linear Regression and MLP will be applied to directly predict the adjusted closing 

price.  

 

2.3 Data Collection 

6 stock variables of DJIA of each trading day with the span of 30 years, from Oct. 5, 

1987 to Sep. 29, 2017 are collected through Yahoo Finance API in python. 

 

The collected 6 variables with the span of 30 years are as follows:  

Table 2.1 Breakdown of the six variables in the input dataset 

Variable name Variable Definition (from Investopedia) Data Source 



 15 

Open The price at which a security first trades upon the 

opening of an exchange on a given trading day. 

Yahoo Finance 

High A security's intraday high trading price. 

Low A security's intraday low trading price.  

Close The final price at which a security is traded on a 

given trading day. 

Adjusted Close A stock’s closing price on any given day of 

trading that has been amended to include any 

distributions and corporate actions that occurred 

at any time prior to the next day's open. 

Volume The number of shares or contracts traded in a 

security or an entire market during a given time 

period. 

 

In the period from Oct. 5, 1987 to Sep. 29, 2017, there are in total 7560 valid trading 

days collected. As adjusted closing price adjusts the closing price for stock splits, 

dividends and rights offerings, adjusted closing price is selected instead of the closing 

price to indicate the close price of a stock in the market in our project. The trend and 

value of adjusted closing price become the response variables. 

 

2.4 Data Preprocessing 

For the sake of brevity, in the following part of the report, Univariate models will refer 

to Linear regression, Logistic regression, SVM, MLP and 1D CNN (univariate) while 

Multivariate model will refer to 1D CNN (multivariate) because the input data to these 

two groups are different. The input data of Univariate models only contain single 

variable while the Multivariate model contains 6 variables in the input. 

 

Univariate models: 

The predictors (X) consist of the adjusted closing price of 30 consecutive days. The 

response (Y) can be the adjusted closing price of DJIA of the 31
st
 day for the 

regression models or the trend of DJIA in the 31
st
 day for classification models. 

 

https://www.investopedia.com/terms/s/security.asp


 16 

Multivariate model: 

The input (X) are composed of 6 variables of DJIA of 30 days. The 6 variables are 

Open, High, Low, Adjusted Close, Volume and Percentage Change. The definition of 

Percentage Change at time T is:  

                   
                

        
 

Apart from price increase or decrease, percentage change also provides information 

about the relative magnitude of the price change. The response (Y) can be the adjusted 

closing price of DJIA of the 31
st
 day for the regression models or the trend of DJIA in 

the 31
st
 day for classification models 

 

 

Figure 2.2 Five technical procedures of data preprocessing 

 

Step 1 is a common data preprocessing technique. No missing values have been found 

in the dataset. 

 

In Step 2, two different formats of input data are generated. As illustrated above, the 

format of input data to Univariate modes are as follows: 

 

Table 2.2 Illustration of the first three samples of Univariate models 

 Adjusted Close (X) Price (Y) Trend (Y) 

Day1 Day2 … Day29 Day30 Day31 Day 31 



 17 

Sample 1 2640.18 2548.63 … 1960.21 1935.01 1949.10 1 

Sample 2 2548.63 2551.08 … 1935.01 1949.10 1922.25 0 

Sample 3 2551.08 2516.64 … 1949.10 1922.25 1939.16 1 

 

Each sample is composed of the adjusted closing price of any consecutive 30 days and 

the corresponding price or trend of the 31
st
 day. 

 

The input data of a CNN model can be 2-dimension or 3-dimension. For example, 

mnist dataset of handwritten digits contains greyscale images of dimension (28,28,1) 

while the dimension of a colored image can be (32,32,3) where the third dimension 

indicates the RGB channels. The structure of image data sheds light on the possible 

input dimension of the collected financial data in our project. Analogously, the raw 

stock data can be cleaned into the format of dimension (30, 6, 1) which corresponds to 

(number of days, number of variables, number of channel). The following matrix 

demonstrates the format of a sample to the Multivariate model: 

 

Table 2.3 Illustration of the first sample of Multivariate model 

 Date Open High Low Adjusted 

Close 

Volume Percentage 

change 

Day 

1 

1987/10/5 2646.54 2658.79 2610.97 2640.18 19000000 -0.000307 

Day 

2 

1987/10/6 2623.53 2632.83 2542.59 2548.63 24370000 -0.034676 

… … … … … … … … 

Day 

29 

1987/11/12 1964.85 1983.92 1934.84 1960.21 28590000 0.032124 

Day 

30 

1987/11/13 1957.07 1973.81 1923.08 1935.01 17070000 -0.012856 

 

Each sample consists of a 2-dimensional input matrix of dimension (30, 6) and the 

corresponding trend of the 31
st
 day.  



 18 

 

Step 3 transfers the variables into a uniform scale, which eliminates the effect caused 

by different scales of different variables. Otherwise, the variable of larger scales such 

as Volume will be dominant, impeding the training process. As each sample contains a 

group of time series data, we focus on the relative price changes in this 30-day period 

and standardize each sample by its mean and standard deviation. After standardization, 

the samples exemplified above are as follows: 

 

Table 2.4 Illustration of the first three samples of Univariate models after 

standardization 

 Adjusted Close (X) Price 

(Y) 

Trend 

(Y) 

Day1 Day2 … Day29 Day30 Day31 Day 31 

Sample 1 1.9511 1.6184 … -0.5203 -0.6119 -0.5607 1 

Sample 2 1.8180 1.8275 … -0.5641 -0.5094 -0.5607 0 

Sample 3 2.0165 1.8752 … -0.4526 -0.5627 -0.4934 1 

 

Table 2.5 Illustration of the first sample of Multivariate model after standardization 

 Date Open High Low Adjusted 

Close 

Volume Percentage 

change 

Day 

1 

1987/10/5 1.8545 1.8458 1.8942 1.9511 -0.8287 0.1597 

Day 

2 

1987/10/6 1.7729 1.7478 1.6604 1.6184 -0.5372 -0.4885 

… … … … … … … … 

Day 

29 

1987/11/12 -0.5630 -0.7035 -0.4175 -0.5203 -0.3081 0.7713 

Day 

30 

1987/11/13 -0.5906 -0.7417 -0.4577 -0.6119 -0.9335 -0.077 

 

In the Step 4, the trend of DJIA of the 31
st
 in each sample is labelled by comparing the 

value of the adjusted closing price of the 30
th

 day and 31
st
 day. If DJIA of the 31

st
 day 



 19 

decreases, then it is labelled as 0, otherwise labelled as 1. 

 

In the final step, 7560 valid trading days which exclude the holidays and market 

suspensions are included in the dataset. If any consecutive 30 days along is regarded as 

an appropriate sample, the maximum number of valid samples will reach 7531 

(7560-30+1=7531). With regards to time series data, to comply with the temporal 

order of the prices observed, we split the dataset in chronological order with the 

proportion approximately 9:1, a common ratio adopted in machine learning modelling.  

 

Table 2.6 Sample size of training and test sets 

Dataset Sample Size Percentage 

Training 6700 0.8897 

Test 831 0.1103 

Total 7531 1 

  

In the process of neural network model fitting, validation set can be split from the 

training set by specifying the validation_split = 0.1. 

 

After the generation of training and test dataset, the percentages of positive and 

negative samples are as follows: 

 

Table 2.7 Distribution of positive and negative samples 

 Positive (1) % Negative (0) % 

Training set 0.5300 0.4700 

Test set 0.5271 0.4729 

 

This dataset is a balanced dataset. Since the percentage of positive samples in the test 

set is larger than 0.5, the quantitative objective of our project is to achieve the accuracy 

above 52.71% in the test set for classification models.  

 

2.5 Machine Learning Models 

A general form of the question to machine learning is to determine the mapping 



 20 

function between the input (X) and the output (Y) F: X -> Y. With different machine 

learning algorithms which have different loss functions, evaluation metrics and 

methods to determinate parameters, machine learning models aim to identify this 

mapping by training the input data whereby we can make predictions on the new data. 

 

Note that independent variables and predictors are interchangeable while dependent 

variable and response are interchangeable in the following explanation. 

 

2.5.1 Traditional Machine Learning Models 

This part will give a brief introduction to the commonly-used traditional machine 

learning models. 

 

2.5.1.1 Linear Regression 

A general form of multiple linear regression (MLR) of p-1 predictors is as follows: 

 

with the assumption that    follows a normal distribution with mean 0 and constant 

variance   . (     ) refers to the     observation or data point while    measures the 

change in E(y) of per unit change in the associated predictor, ceteris paribus. 

 

The parameters are estimated by Least Squares Estimation (LSE) which is to minimize 

the sum of squared errors (SSE). 

 

The coefficient of determination (R
2
) and Mean Squared Error (MSE) can measure the 

goodness-of-fit of the linear regression model. 

 

2.5.1.2 Logistic Regression 

Logistic regression adopts logit link function to relate the predictors to a binary 

discrete response. 



 21 

 

Logistic regression links the probability or odds of a case in the response to a linear 

combination of the predictors. The parameters are determined by Maximum 

Likelihood Estimation (MLE). 

 

By comparing the predicted results to true labels, we can construct a confusion matrix 

based on which various evaluation indicators such as accuracy, sensitivity, precision 

etc. are derived. 

 

ROC (Receiver Operating Characteristic) curve is also a prevalent graphical 

representation of the performance of the binary classifier by changing the 

discrimination threshold. 

 

2.5.1.3 Support Vector Machine 

The main idea of SVM is to find out an optimal hyperplane which can maximize the 

margin for separation of classes to this hyperplane. SVM algorithms adopt various 

kernels for the separating hyperplane. The options of kernels include linear, 

polynomial and RBF etc. When SVM is utilized for classification, the evaluation 

metrics are similar to Logistic Regression. 

 

2.5.2 Deep Learning 

In a neural network, the output of the current layer is passed as the input to the 

successive layer. The model functions as a hierarchical filter where the learned 

features are transformed and abstracted through the multiple layers at different 

degrees.  

 

The input values are passed to the output layer through forward propagation while the 

parameters are updated by backpropagation in an effort to minimize the training error. 

 

The mechanisms of MLP and CNN will be presented in the following part. 

 



 22 

 

2.5.2.1 Multilayer Perceptron 

 

Figure 2.3 A regular three-layer neural network 

 

Figure 2.3 shows the architecture of a regular three-layer (Hidden layer 1, Hidden 

layer 2 and Output layer) neural network where the first layer identifies the primitive 

features of the data input and feed these primitive features to the next layer to form 

more sophisticated features until it produces an output in the final layer. How the 

information of the previous layer is passed to the current layer is determined by the 

activation function of the current layer.  

 

2.5.2.2 Convolutional Neural Network 

 

Figure 2.4 How the data from image pixels are recognized as patterns by the 

convolutional neural network. 

 

Figure 2.4 displays a convolutional neural model that contains the three main types of 



 23 

layers: Convolution Layer, Pooling Layer, and Fully Connected Layer. The 

convolutional and pooling layer first filter and abstract the features and then pass the 

features to the fully connected layer where each neuron has an effect on all the neurons 

of the next layer to produce the output. The structure of fully connected layer is similar 

to the hidden layer in the MLP introduced above. These three types of layers in 

conjunction with other possible kinds of layers are stacked together to form a CNN 

architecture.  

 

2.5.2.2.1 Convolutional Layer 

 

 

Figure 2.5 How an image with three channels (RGB) is processed by the filters in the 

convolutional layer 

 

Figure 2.5 shows how a colored image of the dimension (H, W, 3) is processed by F 

filters of size K to form a feature map. The filter functions as a sliding window that 

convolves with the corresponding area of the input along its height and width at each 

depth. The dimension of the formed feature map is determined by the choices of 

number of filters, filter size, stride and zero padding.  

 

2.5.2.2.2 Pooling Layer 

A convolutional layer is commonly followed by a pooling layer to further downsample 

the feature map spatially. Maxpooling is the most prevalent pooling function 

nowadays. 



 24 

 

 

Figure 2.6 Maxpooling with a filter of size 2x2 and a stride of 2 

 

Figure 2.6 shows how a feature map is downsampled by a filter of size 2x2 and a stride 

of 2 through Maxpooling. The maximum feature in the corresponding area of the 

feature map is extracted to formulate a new feature map. In addition, pooling layers do 

not contain the parameters to be trained. 

 

Compared to the standard neural network, CNN decreases the number of parameters 

required in the network because of parameter sharing. Parameter sharing makes a 

reasonable assumption that if one feature is useful at one particular position, then the 

feature should also be useful at another position (cs231n, n.d.). Therefore, the identical 

or similar features can be detected by the same parameters. 

 

Apart from the demand for fewer parameters, CNN excels at extracting spatial and 

temporal relationship in the data. As the financial data are time series data, 

1-dimensional CNN is applied to explore the temporal relationship along the time 

dimension of the data. In 1D CNN, the filter is a vector instead of a 2-dimensional 

matrix. The 1D filter has also been applied in Natural Language Procession (e.g. 

sentence classification) as a sentence or a speech also has a temporal structure. 

 

2.6 Model training  

Model training is the most critical part that aims to resolve the most substantial 



 25 

technical difficulty to our project. In the following discussion, hyperparameters and 

parameters that determine the structure of the models will be explained. Subsequently, 

a flow of model training process will be illustrated on how the hyperparameters will be 

tuned and what optimization procedures can be adopted based on the performance of 

the training and validation sets.  

 

2.6.1 Hyperparameters and Parameters 

 

2.6.1.1 Traditional Learning Models 

In the Linear Regression and Logistic Regression, regularization such as lasso (L1 

norm) and ridge regression (L2 norm) are applied to reduce overfitting and collinearity. 

When implementing regularization, the coefficient   is a hyperparemeter that controls 

the degree of penalty on the complexity of the model.  

 

The kernels of SVM are controlled by different hyperparameters. A commonly used 

kernel for SVM is the Radial Basis Function (RBF) kernel which is determined by two 

hyperparameters: C and gamma. C represents cost function which controls the 

smoothness of the decision surface while gamma decides the influence of a training 

sample. 

 

Under different configurations of hyperparameters, different sets of parameters are 

trained. 

 

2.6.1.2 Neural Network Models 

The following hyperparameters and parameters are to be determined to build a neural 

network model. The hyperparameters of a MLP are identical to the fully-connected 

layer in the CNN. 

 

Hyperparameters 

 Number of layers 

 Types of layers 

 Number of filters in the convolutional layer 

 Size of the filter in the convolutional layer  



 26 

 Size of the filter in the pooling layer  

 Number of hidden units of the fully-connected layer 

 Activation function of the fully-connected layer 

Parameters 

 Weights and bias of each layer 

 

2.6.2 Backpropagation of Neural Networks 

There can be different combinations of hyperparameter settings. With a fixed setting of 

hyperparameters, the parameters weights and bias terms can be determined by means 

of Backpropagation. Backpropagation transfers the problem to a mathematical 

optimization problem to minimize the loss function. Loss function is a measurement of 

difference between the predicted results and the true values. For example, in terms of 

binary classification problem, the cross-entropy cost function is selected as the loss 

function to be minimized. Cross-entropy cost function is defined by 

    
 

 
                               

 

   

 

where     is the predicted output for the     sample 

 

At each iteration, the weights and bias will be updated by calculating the gradient of 

loss function. The values of these two parameters will finally converge rather than 

diverge to the optimal solution after a number of iterations because the cross-entropy 

cost function is a convex function. 

 

2.6.3 Tuning the Hyperparameters 

Here we use the classification problem as an example to demonstrate how the 

hyperparameters will be tuned. 

 

     Figure 2.7 Demonstration regarding fitting model on the datasets 

 

In Figure 2.7, with a specified combination of hyperparameters, the parameters 

including weights and bias terms of each layer are trained from the training set. Then 



 27 

when fitting the model to make predictions on both the training set and validation set, 

we can get the accuracy of training dataset (A1) and the accuracy of validation dataset 

(A2). 

 

Table 2.8 Four scenarios of the accuracy of training set and the accuracy of validation 

set 

A1 (Training) A2 (Validation) Implication Mitigation 

Low Low Underfitting Increase the complexity of the model 

Low High 

High Low Overfitting Regularization 

High High Satisfactory None 

 

Table 3 shows four possible scenarios of A1 and A2 by comparing A1 and A2 to 

0.5271. Regardless of A2, if A1 is below 0.5271, it implies the problem of underfitting 

(high bias). To solve this problem, we can increase the complexity of the model such 

as increasing the number of layers, the number of filters or the number of hidden units. 

Another scenario is that A1 is high but the model cannot generalize the good 

performance to the new datasets, which leads to the problem of overfitting (high 

variance). Regularization techniques including L2 regularization and dropout can be 

applied to mitigate this problem.  

 

To summarize, with a setting of hyperparameters, the weights and biases are updated 

by backpropagation in the neural network models. Evaluation concerning the 

performance of the setting of hyperparameters is based on the accuracy and loss of the 

model on the training and validation sets, which gives implications on how to tune the 

hyperparameters and what optimization procedures should be adopted. After a number 

of fitting trials, the group of hyperparameters that gives the best test set performance 

will be selected.  

 

2.7 Assessment of the model 

There are various evaluation metrics for different models. To ensure uniformity, we 

adopt accuracy as the assessment of the classification models while mean squared 

error (MSE) is utilized as the assessment of the regression models. 



 28 

 

Classification models: 

By fitting the model to the dataset, the trained model will produce a predicted label for 

each sample. The accuracy of a dataset can be acquired by comparing the predicted 

labels to the true labels in the specified dataset. The definition of the accuracy of a 

dataset is as follows: 

 

         
                                                         

                                      
 

 

Regression models: 

Similarly, by fitting the model to the dataset, the trained model will produce a 

predicted    for each sample. The goodness-of-fit of the regression model is evaluated 

by mean squared error (MSE) which measures the mean value of the squared 

deviations of the predictions from the true values. 

                        
   

 
 

 

 
       

  
  

    where n is the sample size 

 

The objective of model fitting is to increase the accuracy or to reduce MSE. 

 

2.8 Software Setup 

 

Figure 2.8 How the technical procedures are implemented in Python 

 

Figure 2.8 shows how python contributes to implement the technical procedures. The 



 29 

model will be established by the open source programming language Python. In 

comparison to other programming languages such as c++ and java, python is a 

higher-level language with built-in functions that can implement complicated 

operations. In Data Collection, Yahoo Finance API in python is employed to extract 

the stock data from Yahoo Finance. In addition, we make use of the package pandas 

and the module datetime in python to clean the raw data into a well-structured data 

frame with Date as the index in Data Preprocessing.  

 

The Python package scikit-learn or sklearn provides abundant machine learning 

algorithms. We use sklearn to implement traditional machine learning models. In 

addition, there exist a number of frameworks for deep learning. Keras is a high-level 

neural networks API, written in Python and is capable of running using Tensorflow as 

the backend. It not only provides a variety of neural network layers with different 

arguments but also contains some popular gradient descent optimization algorithms 

such as Stochastic gradient descent (SGD), Adaptive moment estimation (Adam) etc. 

Furthermore, we can use Keras to apply dropout and regularization. 

 

3. Results and Findings  

The evaluation metrics of training and test sets will be displayed for each model. The 

process to determine optimal hyperparameter setting for traditional machine learning 

models will be shown while for neural network models, three models with the best 

performance will be reported.  

 

3.1 Regression models 

The predicted values of the first 100 data points in the test set will be plotted against 

the real price for the best linear regression model and MLP model. 

  

3.1.1 Linear Regression 

We use linear_model in the sklearn library. In this function   is specified as alpha. 

The regularization strength is larger with a larger alpha. 

 

Without any regularization, the mse of training and test sets are as follows: 

 



 30 

 

Table 3.1 MSE of training and test sets without regularization by linear regression 

Training MSE Test MSE 

9655.06 18352.1540 

 

3.1.1.1 Lasso regression (L1 norm) 

With lasso regression, the norm of some parameters may become zero, realizing 

variable selection. 

 

Figure 3.1 MSE of training and test sets by lasso regression with varying alpha from 

0.1 to 0.9 

 

Table 3.2 MSE of training and test sets by varying alpha from 0.01 to 0.09 by lasso 

regression 

alpha Training MSE Test MSE 

0.01 9689.1791 18325.1919 

0.02 9694.8950 18313.7340 

0.03 9701.0727 18327.7996 

0.04 9712.3855 18351.3885 



 31 

0.05 9728.8333 18384.5006 

0.06 9750.4161 18427.1361 

0.07 9777.1340 18479.2949 

0.08 9808.9869 18540.9769 

0.09 9845.9747 18612.18223 

 

When alpha = 0.02, the MSE of test set by lasso regression reaches the minimum of 

18313.73. 

 

3.1.1.2 Ridge Regression (L2 norm) 

Compared to lasso regression, L2 norm regularization gives far less penalty to the 

complexity of the model. The norm of the parameters will be close to 0 but will not be 

eliminated. 

 

Figure 3.2 MSE of training and test sets by ridge regression with varying alpha from 1 

to 99 

 

Figure 3.2 shows that although the mse of test sets decreases as alpha increases. The 

mse only begins to be smaller than 18315 when alpha is as large as 80. Thus, lasso 

regression is more effective. 



 32 

 

 

Figure 3.3 The first 100 predicted prices against real prices by lasso regression with 

alpha = 0.02 

 

There exists postponement in prediction values compared to real values. 

 

3.1.2 Multilayer Perceptron (Regression) 

Three reported MLP models all achieve a lower MSE than the best linear regression 

model which has MSE equal to 18313.7340. 

 

3.1.2.1 MLP-R-Model 1 

Table 3.3 Detailed structure and hyperparameters of MLP-R-Model 1 

Layer Activation Regularization 

Dense (400) LeakyReLU L2(0.004) 

Dropout   0.50 

Dense (200) LeakyReLU L2(0.004) 

Dropout   0.50 

Dense (100) LeakyReLU L2(0.004) 

Dropout   0.50 



 33 

Output Linear  

 

Table 3.4 MSE of training and test sets by MLP-R-Model 1 

 Training Test 

MSE 9570.3835 18226.6978 

 

 

Figure 3.4 The first 100 predicted prices against real prices by MLP-R-Model 1 

 

Similarly, there exists postponement in prediction values compared to real values. 

 

3.1.2.2 MLP-R-Model 2 

Table 3.5 Detailed structure and hyperparameters of MLP-R-Model 2 

Layer Activation Regularization 

Dense (400) LeakyReLU L2(0.003) 

Dropout   0.45 

Dense (200) LeakyReLU L2(0.003) 

Dropout   0.45 

Dense (100) LeakyReLU L2(0.003) 



 34 

Dropout   0.45 

Output Linear  

 

Table 3.6 MSE of training and test sets by MLP-R-Model 2 

 Training Test 

MSE 9645.0725 18233.0277 

 

3.1.2.3 MLP-R-Model 3 

Table 3.7 Detailed structure and hyperparameters of MLP-R-Model 3 

Layer Activation Regularization 

Dense (400) LeakyReLU L2(0.003) 

Dropout   0.50 

Dense (200) LeakyReLU L2(0.003) 

Dropout   0.50 

Dense (100) LeakyReLU L2(0.003) 

Dropout   0.50 

Output Linear  

 

Table 3.8 MSE of training and test sets by MLP-R-Model 3 

 Training Test 

MSE 9501.9817 18267.5403 

 

3.2 Classification Models 

 

3.2.1 Logistic Regression 

sklearn.linear_model.LogisticRegression is applied to conduct logistic regression. 

Different from the counterpart alpha in the Linear Regression, the hyperparameter C 

which controls the regularization strength refers to the inverse of regularization 

strength, i.e.        
 

 
. Smaller C specifies stronger regularization power. The 

default value of C is 1.0. 

 

Table 3.9 Accuracy of training and test sets by logistic regression with L1 and L2 

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model


 35 

penalty with default C=1.0 

Penalty Training Accuracy Test Accuracy 

  (C=1.0) 0.5421 0.5295 

  (C=1.0) 0.5397 0.5319 

 

3.2.1.1 Logistic Regression with L2 Penalty 

 

Figure 3.5 Accuracy of training and test sets by logistic regression with L2 penalty 

with C varying from 0.1 to 2.0 

 

Figure 3.5 shows that the accuracy of test set may keep going up when C is decreasing 

below 0.1. 

 

Table 3.10 Accuracy of training and test sets by logistic regression with L2 penalty 

with C varying from 0.01 to 0.1 

C Training accuracy Test accuracy 

0.01 0.5424 0.5187 

0.02 0.5424 0.5259 

0.03 0.5412 0.5307 



 36 

0.04 0.5404 0.5319 

0.05 0.5407 0.5331 

0.06 0.5406 0.5343 

0.07 0.5406 0.5355 

0.08 0.5407 0.5355 

0.09 0.5406 0.5343 

0.1 0.5406 0.5331 

 

When C = 0.07 or 0.08, the accuracy of test set both reaches its maximum of 0.5355 

while the training accuracy is higher when C=0.08. 

 

3.2.1.2 Logistic Regression with L1 Penalty 

 

Figure 3.6 Accuracy of logistic regression with L1 penalty with C varying from 0.1 to 

2.0 

 

Figure 3.6 shows that the maximum accuracy occurs approximately in the interval (1.4, 

1.6) of C. 

 

 



 37 

 

 

Table 3.11 Accuracy of training and test sets by logistic regression with L1 penalty 

with C varying from 1.3 to 1.6 

C Training accuracy Test accuracy 

1.3 0.5409 0.5319 

1.4 0.5409 0.5319 

1.5 0.5404 0.5343 

1.6 0.5404 0.5331 

When C = 1.5, the accuracy of test set reaches its maximum of 0.5343. 

 

3.2.2 Support Vector Machine  

 

The linear kernel and the most commonly used RBF kernel are selected for the SVM 

model. 

 

Table 3.12 Accuracy of training and test sets with linear kernel and RBF kernel and 

default C = 1.0 

Kernel Training Accuracy Test Accuracy 

Linear(C=1.0) 0.5401 0.5318 

RBF (C=1.0) 0.6164 0.5307 

 

It is found that the training accuracy and test accuracy remain unchanged with the 

linear kernel against various values of C. Thus the best accuracy by linear kernel is 

0.5318. 

 

In terms of RBF kernel, by grid search in the range C_range = [0.2,0.4,0.6,0.8,1.0,1.2] 

and gamma_range = [0.1, 0.5, 1], we get the following result: 

 

Table 3.13 Accuracy of training and test sets with RBF kernel by grid search in 

C_range and gamma_range 

C gamma Training accuracy Test accuracy 



 38 

0.2 0.1 0.5530 0.5187 

0.2 0.5 0.5337 0.5283 

0.2 1 0.5300 0.5271 

0.4 0.1 0.6248 0.5114 

0.4 0.5 0.5678 0.5187 

0.4 1 0.5397 0.5283 

0.6 0.1 0.7069 0.5319 

0.6 0.5 0.9373 0.5174 

0.6 1 0.9885 0.5283 

0.8 0.1 0.7622 0.5259 

0.8 0.5 0.9779 0.5066 

0.8 1 0.9978 0.5223 

1 0.1 0.7872 0.5223 

1 0.5 0.9861 0.5054 

1 1 0.9987 0.5126 

1.2 0.1 0.8081 0.5235 

1.2 0.5 0.9906 0.5102 

1.2 1 0.9996 0.5054 

When C = 0.6 and gamma = 0.1, the SVM model with RBF kernel achieves the 

maximum test set accuracy of 0.5319 by grid search in the specified range of C and 

gamma. 

 

3.2.3 Multilayer Perceptron (Classification) 

The architecture of the model is a regular three-layer neural network which consists of 

two hidden layers and one output layer. Three models with the highest accuracy on test 

set. The activation function ReLU and LeakyReLU are both adopted here. 

 

3.2.3.1 MLP-C-Model 1 

 

Table 3.14 Detailed structure and hyperparameters of MLP-C-Model 1 

Layer Activation Regularization 

Dense (600) LeakyReLU L2(0.0003) 



 39 

Dropout   0.20 

Dense (30) LeakyReLU L2(0.0003) 

Dropout   0.20 

Output Sigmoid  

 

Table 3.15 Accuracy and loss of training and test sets by MLP-C-Model 1 

 Training Test 

Accuracy 0.5543 0.5487 

Loss 0.7002 0.7123 

 

3.2.3.2 MLP-C-Model 2 

Table 3.16 Detailed structure and hyperparameters of MLP-C-Model 2 

Layer Activation Regularization 

Dense (400) ReLU L2 (0.001) 

Dropout   0.20 

Dense (20) ReLU L2 (0.001) 

Dropout   0.20 

Output Sigmoid  

 

Table 3.17 Accuracy and loss of training and test sets by MLP-C-Model 2 

 Training Test 

Accuracy 0.5657 0.5463 

Loss 0.7203 0.7320 

 

3.2.3.3 MLP-C-Model 3 

 

Table 3.18 Detailed structure and hyperparameters of MLP-C-Model 3 

Layer Activation Regularization 

Dense (600) ReLU L2 (0.0005) 

Dropout   0.25 

Dense (30) ReLU L2 (0.001) 

Dropout   0.20 



 40 

Output Sigmoid  

 

 

 Table 3.19 Accuracy and loss of training and test sets by MLP-C-Model 3 

 Training Test 

Accuracy 0.5696 0.5451 

Loss 0.7077 0.7230 

 

3.2.4 1D Convolutional Neural Network (Univariate) 

BatchNormalization layer is inserted before the layer of nonlinear activation function. 

According to Ioffe and Szegedy (2015), this technique makes the layer inputs to take 

on a unit Gaussian distribution before activation, which can accelerate the training 

convergence and more robust to poor initialization. 

 

It is omitted in the following tables for the sake of brevity. 

 

3.2.4.1 Conv-UC-Model 1 

Table 3.20 Detailed structure and hyperparameters of Conv-UC-Model 1 

(BatchNormalization omitted) 

Layer No. of 

filters 

Filter 

size 

Stride Padding Activation Regularization 

Conv1D 32 3 1 Valid ReLU L2 (0.001) 

MaxPooling1D 1 2 2 Valid   

Conv1D 32 3 1 Same ReLU  

MaxPooling1D 1 2 2 Valid   

Dropout      0.30 

Flatten       

Dropout       0.30 

Dense (96)     ReLU  

Output     Sigmoid  

 

Table 3.21 Accuracy and loss of training and test sets by Conv-UC-Model 1 



 41 

 Training Test 

Accuracy 0.5721 0.5548 

Loss 0.6797 0.6983 

 

3.2.4.2 Conv-UC-Model 2 

 Table 3.22 Detailed structure and hyperparameters of Conv-UC-Model 2 

(BatchNormalization omitted) 

Layer No. of 

filters 

Filter 

size 

Stride Padding Activation Regularization 

Conv1D 32 3 1 Valid ReLU L2 (0.005) 

MaxPooling1D 1 2 2 Valid   

Conv1D 32 5 1 Same ReLU  

MaxPooling1D 1 2 2 Valid   

Dropout      0.30 

Flatten       

Dropout       0.30 

Dense (96)     ReLU  

Output     Sigmoid  

 

Table 3.23 Accuracy and loss of training and test sets by Conv-UC-Model 2 

 Training Test 

Accuracy 0.5661 0.5475 

Loss 0.6846 0.6938 

 

3.2.4.3 Conv-UC-Model 3 

Table 3.24 Detailed structure and hyperparameters of Conv-UC-Model 3 

(BatchNormalization omitted) 

Layer No. of 

filters 

Filter 

size 

Stride Padding Activation Regularization 

Conv1D 32 3 1 Valid ReLU L2 (0.005) 

MaxPooling1D 1 2 2 Valid   

Conv1D 32 5 1 Same ReLU  



 42 

MaxPooling1D 1 2 2 Valid   

Dropout      0.30 

Flatten       

Dropout       0.30 

Dense (96)     ReLU  

Output     Sigmoid  

 

Table 3.25 Accuracy and loss of training and test sets by Conv-UC-Model 3 

 Training Test 

Accuracy 0.5864 0.5463 

Loss 0.6851 0.7004 

 

3.2.5 1D Convolutional Neural Network (Multivariate) 

Conv-MC-Model 1 and Conv-MC-Model 2 have the same accuracy of 0.5548. 

 

3.2.5.1 Conv-MC-Model 1 

Table 3.26 Detailed structure and hyperparameters of Conv-MC-Model 1 

(BatchNormalization, Flatten omitted) 

Layer No. of 

filters 

Filter 

size 

Stride Padding Activation Regularization 

Conv1D 8 3 1 Same ReLU L2 (0.005) 

MaxPooling1D 1 2 2 Valid   

Dropout       0.20 

Conv1D 16 3 1 Same ReLU L2 (0.005) 

MaxPooling1D 1 2 2 Valid   

Dropout       0.20 

Dense (96)     ReLU  

Output     Sigmoid  

 

Table 3.27 Accuracy and loss of training and test sets by Conv-MC-Model 1 

 Training Test 

Accuracy 0.6125 0.5548 



 43 

Loss 0.6835 0.7138 

 

 

3.2.5.2 Conv-MC-Model 2 

Table 3.28 Detailed structure and hyperparameters of Conv-MC-Model 2 

(BatchNormalization, Flatten omitted) 

Layer No. of 

filters 

Filter 

size 

Stride Padding Activation Regularization 

Conv1D 8 5 1 Same ReLU L2 (0.004) 

MaxPooling1D 1 2 2 Valid   

Dropout       0.25 

Conv1D 16 5 1 Same ReLU L2 (0.01) 

MaxPooling1D 1 2 2 Valid   

Dropout       0.30 

Dense (96)     ReLU  

Output     Sigmoid  

 

Table 3.29 Accuracy and loss of training and test sets by Conv-MC-Model 2 

 Training Test 

Accuracy 0.5864 0.5548 

Loss 0.6961 0.7108 

 

3.2.5.3 Conv-MC-Model 3 

Table 3.30 Detailed structure and hyperparameters of Conv-MC-Model 3 

(BatchNormalization, Flatten omitted) 

Layer No. of 

filters 

Filter 

size 

Stride Padding Activation Regularization 

Conv1D 8 3 1 Same ReLU L2 (0.0025) 

MaxPooling1D 1 2 2 Valid   

Dropout       0.20 

Conv1D 8 3 1 Same ReLU L2 (0.0025) 

MaxPooling1D 1 2 2 Valid   



 44 

Dropout       0.20 

Dense (64)     ReLU  

Dropout       0.20 

Output     Sigmoid  

 

 Table 3.31 Accuracy and loss of training and test sets by Conv-MC-Model 3 

 Training Test 

Accuracy 0.5637 0.5511 

Loss 0.7000 0.7075 

 

3.3 Summary of Results 

The models with the best performance by each machine learning algorithm are 

summarized in this part and will be selected for mock trading in the subsequent 

session. 

 

3.3.1 Regression Models 

 

3.3.1.1 Linear Regression 

The best hyperparameter setting for linear regression is lasso regression with alpha 

equal to 0.02. With this setting, the MSE on the test set is 18313.7340. 

 

3.3.1.2 Multilayer Perceptron (Regression) 

The best MLP model for regression is MLP-R-Model 1 which have three hidden layers 

with 400, 200, and 100 nodes and followed by a dropout layer with dropout probability 

equal to 0.50 respectively. The activation function in the convolutional layer is 

LeakyReLU while each convolutional layer implements L2 regularization with 0.004 

as the regularization parameter. The MSE of this model on the test set is 18226.6978.  

 

3.3.2 Classification Models 

 

3.3.2.1 Logistic Regression 

The best performance is given by the model with L2 penalty and with C equal to 0.08. 



 45 

The accuracy of this model on the test set is 0.5355. 

 

3.3.2.2 Support Vector Machine 

The best SVM model uses RBF kernel with C equal to 0.6 and gamma equal to 0.1. 

This SVM model test set accuracy of 0.5319. 

 

3.3.2.3 Multilayer Perceptron (Classification) 

MLP-C-Model 1 gives the highest accuracy of 0.5487 in classifying the trend. This 

model contains two hidden layers with 600 and 30 nodes, followed by a dropout layer 

with dropout rate equal to 0.20 respectively. The activation function in the 

convolutional layers is LeakyReLU. L2 regularization with 0.0003 as penalty 

parameter is applied to all convolutional layers. 

 

3.3.2.4 1D Convolutional Neural Network (Univariate) 

Conv-UC-Model 1 achieves classification accuracy of 0.5548 on the test set and 

0.5721 on the training set. The details of this model are discussed in 3.2.4.1. 

 

3.3.2.5 1D Convolutional Neural Network (Multivariate) 

Although Conv-MC-Model 1 and Conv-MC-Model 2 have same test set accuracy, 

Conv-MC-Model 1 is a better model because its training set accuracy is higher than 

that of Conv-MC-Model 2. 

 

Conv-MC-Model 1 achieves classification accuracy of 0.5548 on the test set and 

0.6125 on the training set. The details of this model are discussed in 3.2.5.1. 

 

4. Mock Trading 

The models summarized above will be applied in mock trading. The mock trading 

period is from April 2 to April 13 (10 business days). Assume we have enough money 

to invest in the first trade and assume we can go short in the stock market without 

virtually owning a stock. The decision to buy or sell is made before the market opens. 

The gains and loss will be calculated daily for each model. If the predicted price of 

today is higher than the real price on yesterday or the predicted label is 1, then the 

decision is to buy, otherwise to sell at the price of yesterday. 



 46 

 

 

 

 

4.1 Regression Models 

 

4.1.1 Linear Regression 

Table 3.32 Mock trading results for linear regression model 

Date Prediction Decision Yesterday Price Real Today Price Gain/Loss 

2-Apr 24128.46 Buy 24103.11 23644.19 -458.92 

3-Apr 23677.28 Buy 23644.19 24033.36 389.17 

4-Apr 24059.38 Buy 24033.36 24264.30 230.94 

5-Apr 24286.11 Buy 24264.30 24505.22 240.92 

6-Apr 24522.81 Buy 24505.22 23932.76 -572.46 

9-Apr 23959.70 Buy 23932.76 23979.10 46.34 

10-Apr 24004.37 Buy 23979.10 24408.00 428.90 

11-Apr 24424.09 Buy 24408.00 24189.45 -218.55 

12-Apr 24207.79 Buy 24189.45 24483.05 293.60 

13-Apr 24495.83 Buy 24483.05 24360.14 -122.91 

     257.03 

 

The predictions by linear regression model are all higher than the real price of 

yesterday. As a result, the decision is to buy DJIA every day, which incurs an earning 

of $257.03. 

 

4.1.2 Multilayer Perceptron (Regression) 

Table 3.33 Mock trading results for MLP-R-Model 1 

Date Prediction Decision Yesterday Price Real Today Price Gain/Loss 

2-Apr 24097.30 Sell 24103.11 23644.19 458.92 

3-Apr 23647.17 Buy 23644.19 24033.36 389.17 

4-Apr 24039.60 Buy 24033.36 24264.30 230.94 

5-Apr 24268.02 Buy 24264.30 24505.22 240.92 



 47 

6-Apr 24500.81 Sell 24505.22 23932.76 572.46 

9-Apr 23948.38 Buy 23932.76 23979.10 46.34 

10-Apr 23964.42 Sell 23979.10 24408.00 -428.90 

11-Apr 24291.10 Sell 24408.00 24189.45 218.55 

12-Apr 24197.79 Buy 24189.45 24483.05 293.60 

13-Apr 24549.50 Buy 24483.05 24360.14 -122.91 

     1899.09 

 

The mock trading by MLP-R-Model 1 leads to a profit of $1899.09. 

 

4.2 Classification Models 

 

4.2.1 Logistic Regression 

Table 3.34 Mock trading results for logistic regression model 

Date Prediction Decision Yesterday Price Real Today Price Gain/Loss 

2-Apr 0  Sell 24103.11 23644.19 458.92 

3-Apr 1  Buy 23644.19 24033.36 389.17 

4-Apr 1  Buy 24033.36 24264.30 230.94 

5-Apr 1  Buy 24264.30 24505.22 240.92 

6-Apr 1  Buy 24505.22 23932.76 -572.46 

9-Apr 1  Buy 23932.76 23979.10 46.34 

10-Apr 0  Sell 23979.10 24408.00 -428.90 

11-Apr 0  Sell 24408.00 24189.45 218.55 

12-Apr 1  Buy 24189.45 24483.05 293.60 

13-Apr 1  Buy 24483.05 24360.14 -122.91 

     754.17 

 

The logistic model leads to a profit of $754.17. 

 

4.2.2 Support Vector Machine 

Table 3.35 Mock trading results for SVM model 

Date Prediction Decision Yesterday Price Real Today Price Gain/Loss 



 48 

2-Apr 0  Sell 24103.11 23644.19 458.92 

3-Apr 0  Sell 23644.19 24033.36 -389.17 

4-Apr 0  Sell 24033.36 24264.30 -230.94 

5-Apr 1  Buy 24264.30 24505.22 240.92 

6-Apr 1  Buy 24505.22 23932.76 -572.46 

9-Apr 1  Buy 23932.76 23979.10 46.34 

10-Apr 1  Buy 23979.10 24408.00 428.90 

11-Apr 0  Sell 24408.00 24189.45 218.55 

12-Apr 1  Buy 24189.45 24483.05 293.60 

13-Apr 1  Buy 24483.05 24360.14 -122.91 

     371.75 

 

The SVM model makes a profit of $371.75. 

 

4.2.3 Multilayer Perceptron (Classification) 

Table 3.36 Mock trading results for MLP-C-Model 1 

Date Prediction Decision Yesterday Price Real Today Price Gain/Loss 

2-Apr 0  Sell 24103.11 23644.19 458.92 

3-Apr 0  Sell 23644.19 24033.36 -389.17 

4-Apr 1  Buy 24033.36 24264.30 230.94 

5-Apr 1  Buy 24264.30 24505.22 240.92 

6-Apr 1  Buy 24505.22 23932.76 -572.46 

9-Apr 1  Buy 23932.76 23979.10 46.34 

10-Apr 1  Buy 23979.10 24408.00 428.90 

11-Apr 0  Sell 24408.00 24189.45 218.55 

12-Apr 1  Buy 24189.45 24483.05 293.60 

13-Apr 1  Buy 24483.05 24360.14 -122.91 

Total     833.63 

 

We earn a profit of $833.63. 

 

4.2.4 1D Convolutional Neural Network (Univariate) 



 49 

Table 3.37 Mock trading results for Conv-UC-Model 1 

Date Prediction Decision Yesterday Price Real Today Price Gain/Loss 

2-Apr 0  Sell 24103.11 23644.19 458.92 

3-Apr 0  Sell 23644.19 24033.36 -389.17 

4-Apr 1  Buy 24033.36 24264.30 230.94 

5-Apr 1  Buy 24264.30 24505.22 240.92 

6-Apr 1  Buy 24505.22 23932.76 -572.46 

9-Apr 1  Buy 23932.76 23979.10 46.34 

10-Apr 1  Buy 23979.10 24408.00 428.90 

11-Apr 1  Buy 24408.00 24189.45 -218.55 

12-Apr 1  Buy 24189.45 24483.05 293.60 

13-Apr 0  Sell 24483.05 24360.14 122.91 

     642.35 

 

The mock trading result is a profit of $642.35. 

 

4.2.5 1D Convolutional Neural Network (Multivariate) 

Table 3.38 Mock trading results for Conv-MC-Model 1 

Date Prediction Decision Yesterday Price Real Today Price Gain/Loss 

2-Apr 1  Buy 24103.11 23644.19 -458.92 

3-Apr 1  Buy 23644.19 24033.36 389.17 

4-Apr 1  Buy 24033.36 24264.30 230.94 

5-Apr 1  Buy 24264.30 24505.22 240.92 

6-Apr 1  Buy 24505.22 23932.76 -572.46 

9-Apr 1  Buy 23932.76 23979.10 46.34 

10-Apr 1  Buy 23979.10 24408.00 428.90 

11-Apr 1  Buy 24408.00 24189.45 -218.55 

12-Apr 1  Buy 24189.45 24483.05 293.60 

13-Apr 1  Buy 24483.05 24360.14 -122.91 

     257.03 

 

The 1D convolutional (multivariate) model give predictions of 1 to all the samples in 



 50 

our mock data set, resulting in a gain of $257.03. 

 

 

 

 

4.3 Summary of Mock Trading Results 

Table 3.39 Summary of mock trading results in descending order of gain 

Model Gain / Loss ($) 

Multilayer perceptron (regression) 1899.09 

Multilayer perceptron (classification) 833.63 

Logistic regression 754.17 

1D Convolutional neural network (Univariate) 642.35 

Support Vector Machine 371.75 

Linear regression 257.03 

1D Convolutional neural network (Multivariate) 257.03 

 

All models make earnings in mock trading. MLP (regression) model generates the 

highest return of $1899.09. MLP (classification) model ranks the second with a profit 

of $833.63, followed by the logistic regression model with earning of $754.17. Linear 

regression and 1D CNN (Multivariate) make the smallest earnings. 

 

5. Discussions and Analysis 

 

5.1 Evaluations and Explanations 

From the model training results which contain the test set accuracy and test set MSE, 

we can first conclude that all the classification models have accomplished the target of 

obtaining accuracy above 0.5271. In addition, MLP (regression) achieves a lower MSE 

than linear regression. The model training results show that neural network models 

generally have more capacity than the traditional machine learning models in our 

project. However, the mock trading results show that the 1D CNN (Multivariate) 

model does not work well as expected while MLP models display good performance in 

both regression and classification. 



 51 

 

It is also noteworthy that both the linear regression model and 1D CNN (Multivariate) 

model predict ‘buy’ in every trading day. It may imply the problem that these two 

models are very likely to predict positive case when they encounter new data. However, 

more data are required to further study these problems as 10 business days is a short 

time and these problems may occur only regarding the data of these 10 days. 

 

5.2 Limitations and Difficulties  

Although the dimension and the format of the financial data comply with the 

dimension of image data, the numerical values of financial data do not have the 

characteristics of pixel data. Normally, a pixel is associated with the surrounding 

pixels, showing information of shapes, colors etc. The configuration of financial data 

into a matrix in our project may fail to give appropriate graphical representation for 

CNN to learn. 

 

Besides, data augmentation is a common and useful technique to deal with overfitting 

in terms of pattern recognition problem. Data augmentation can be accomplished by 

cropping, flipping, rotation etc. Nevertheless, we cannot utilize this powerful 

technique because our financial data are not image data.  

 

The most substantial challenge lies in how to determine the optimal configuration of 

the hyperparameters of the neural networks. The number of hyperparameters to be 

determined by neural network models is much larger than linear regression, logistic 

regression etc. which makes grid search extremely time-consuming. In our project, the 

hyperparameters are tuned by hand-tuning, which may be inefficient and may fail to 

find out better configurations. The difficulty in finding the optimal settings explains 

why transfer learning with a pertained model is a popular practice. 

    

6. Future Improvement and Recommendations  

In our project, only 6 variables: open, high, low, close and percentage change of close 

prices are incorporated to train the models. In the financial market, there exist more 

meaningful or complicated financial indicators such as moving average, relative 

strength index (RSI), on-balance-volume (OBV) etc. for financial trading strategy 



 52 

construction. In addition, the variables collected is on a daily basis scale. High 

frequency data with the scale of hours and minutes will not only substantially increase 

the data volume but also discloses more accurate short-term price variation. 

 

Apart from increasing the amount and complexity of data, another possible 

improvement of performance of CNN is to use real images as input. Meaningful 

financial data can be plotted with refined settings of margins, color etc., following the 

rule to have more effective graphical representations of financial data.  

 

Recurrent Neural Network (RNN) especially the Long Short-Term Memory (LSTM) 

may also be suitable for stock prediction as it stores “memory” about previous 

computations, which contributes to extract the pattern in time series data. 

                                                

7. Conclusion 

This report describes how we build different machine learning models including MLP 

and CNN models to predict the price or trend of Dow Jones Industrial Average on the 

31
st
 day based on the trading data of previous 30 days. The quantitative objective that 

all classification models have achieved accuracy above 52.71% has been satisfied. It is 

also observed that MLP can obtain a lower MSE than linear regression. The MSE and 

accuracy of the best models are reported and the mock trading results based on the 

constructed models for the period April 2 to April 13 have also been disclosed. The 

recommendations raised in the previous session can be our future direction. More data 

should be provided for mock trading to detect the prediction pattern of the models. 

 

 

 

 

 

 

 

 

 

 



 53 

References 

 

cs231n. (n.d.). CS231n Convolutional Neural Networks for Visual Recognition. 

Retrieved November 30, 2017, from http://cs231n.github.io/convolutional-networks/ 

 

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network 

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. 

 

Ketkar, N. (2017). Deep learning with Python: a hands-on introduction. Berkeley, CA: 

Apress. doi:10.1007/978-1-4842-2766-4 

 

Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted 

trees, random forests: Statistical arbitrage on the S&P 500. European Journal of 

Operational Research, 259(2), 689-702. 

 

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning 

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. 

 

Leung, M. T., Daouk, H., & Chen, A. S. (2000). Forecasting stock indices: a 

comparison of classification and level estimation models. International Journal of 

Forecasting, 16(2), 173-190. 

 

S&P Dow Jones Indices. (2017, April). Dow Jones Averages Methodology [PDF]. 

Retrieved October 23, 2017, from 

https://us.spindices.com/indices/equity/dow-jones-industrial-average 

 

 

 

 

 

 

 

 



 54 

Image Sources 

 

Figure 2.3 

CS231n. (n.d.). 3-layer neural network with three inputs, [Chart]. In CS231n: 

Convolutional Neural Networks for Visual Recognition. Retrieved October 24, 2017, 

from http://cs231n.github.io/neural-networks-1/ 

 

Figure 2.4 

Brandon. (2016, August 18). How do Convolutional Neural Networks work? [Chart]. 

Retrieved October 24, 2017, from 

https://brohrer.github.io/how_convolutional_neural_networks_work.html 

 

Figure 2.5 

https://i.ytimg.com/vi/FTNNfba5CJw/hqdefault.jpg 

 

Figure 2.6 

https://www.google.com.hk/search?q=cnn+pooling+layer&safe=strict&source=lnms

&tbm=isch&sa=X&ved=0ahUKEwirre6E2rbaAhVS6LwKHSFeDx4Q_AUICygC&b

iw=1133&bih=553#imgrc=_qdiQ0Wq2sQCiM: 

 

 


